Sums of Reciprocals of Polynomials over Finite Fields

نویسندگان

  • Kenneth Hicks
  • Xiang-dong Hou
  • Gary L. Mullen
چکیده

Consider the following example (typical in college algebra): 1 x2 + 1 x2 + 1 + 1 x2 + x + 1 x2 + x+ 1 = 4x + 6x + 8x + 6x + 3x+ 1 x2(x+ 1) (x2 + 1) (x2 + x+ 1) . Now let’s assume that all the coefficients in the above are from the binary field F2 = Z2 = {0, 1}. The result becomes much cleaner: 1 x2 + 1 x2 + 1 + 1 x2 + x + 1 x2 + x+ 1 = 1 (x2 + x)(x4 + x) . After a brief introduction to finite fields, we consider the sum of the reciprocals of all monic polynomials of a given degree over a finite field Fq each raised to the power of k. When k ≤ q, the sum has a surprisingly simple result due to mysterious cancellations that occur in the sum. We discuss this interesting phenomenon and its connection to a deeper problem. The talk is based on a recent paper in the MAA Monthly: K. Hicks, X. Hou, G. L. Mullen, Sums of reciprocals of polynomials over finite fields, Amer. Math. Monthly, 119 (2012), 313 – 317.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized reciprocals, factors of Dickson polynomials and generalized cyclotomic polynomials over finite fields

We give new descriptions of the factors of Dickson polynomials over finite fields in terms of cyclotomic factors. To do this generalized reciprocal polynomials are introduced and characterized. We also study the factorization of generalized cyclotomic polynomials and their relationship to the factorization of Dickson polynomials.

متن کامل

Power sums of polynomials over finite fields and applications: A survey

In this brief expository survey, we explain some results and conjectures on various aspects of the study of the sums of integral powers of monic polynomials of a given degree over a finite field. The aspects include non-vanishing criteria, formulas and bounds for degree and valuation at finite primes, explicit formulas of various kind for the sums themselves, factorizations of such sums, genera...

متن کامل

Exponential sums with Dickson polynomials

We give new bounds of exponential sums with sequences of iterations of Dickson polynomials over prime finite fields. This result is motivated by possible applications to polynomial generators of pseudorandom numbers. © 2004 Elsevier Inc. All rights reserved.

متن کامل

Index bounds for character sums of polynomials over finite fields

Abstract. We provide an index bound for character sums of polynomials over finite fields. This improves the Weil bound for high degree polynomials with small indices, as well as polynomials with large indices that are generated by cyclotomic mappings of small indices. As an application, we also give some general bounds for numbers of solutions of some Artin-Schreier equations and mininum weight...

متن کامل

Hermite Character Sums

This evaluation proves a conjecture in [9, p. 370] and solves the problem of finding explicitly the number of rational points (mod/?) on the surface z = (x + l)(y + ΐ)(x + y), a problem some algebraic geometers had worked on without success. Character sum analogues of the important formulas for orthogonal polynomials are potentially as useful as those for hypergeometric series, so a systematic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2012